Génétique Moléculaire des Rythmes Circadiens

Leader

Research center

Bâtiment 145, Centre d'études de Saclay
91191 Gif sur Yvette
Philippe Vernier

Institution

CNRS
Université Paris Sud
ED577
Université Paris Saclay

Laboratory

Département Molécules & Circuits
UMR9197
Idex NeuroSaclay

Mots clefs

génétique de la drosophile
biologie moléculaire
 

publications

Saint-Charles A, Michard-Vanhée C, Alejevski F, Chélot E, Boivin A, Rouyer F. Four of the six Drosophila rhodopsin-expressing photoreceptors can mediate circadian entrainment in low light. J Comp Neurol. 2016 Oct 1;524(14):2828-44. doi: 10.1002/cne.23994. Epub 2016 Mar 28.

Szabo, A., Papin, C., Zorn, D., Ponien, P., Weber, F., Raabe, T., and Rouyer, F. (2013). The CK2 kinase stabilizes CLOCK and represses its activity in the Drosophila circadian oscillator. PLoS Biol 11, e1001645.

Vieira, J., Jones, A. R., Danon, A., Sakuma, M., Hoang, N., Robles, D., Tait, S., Heyes, D. J., Picot, M., Yoshii, T., Helfrich-Forster, C., Soubigou, G., Coppee, J. Y., Klarsfeld, A., Rouyer, F., Scrutton, N. S., and Ahmad, M. (2012). Human cryptochrome-1 confers light independent biological activity in transgenic Drosophila correlated with flavin radical stability. PLoS One 7, e31867.

Grima, B., Dognon, A., Lamouroux, A., Chelot, E., and Rouyer, F. (2012). CULLIN-3 Controls TIMELESS Oscillations in the Drosophila Circadian Clock. PLoS Biol 10, e1001367.

Lamaze, A., Lamouroux, A., Vias, C., Hung, H. C., Weber, F., and Rouyer, F. (2011). The E3 ubiquitin ligase CTRIP controls CLOCK levels and PERIOD oscillations in Drosophila. EMBO Rep 12, 549-557.

Klarsfeld, A., Picot, M., Vias, C., Chelot, E., and Rouyer, F. (2011). Identifying specific light inputs for each subgroup of brain clock neurons in Drosophila larvae. J Neurosci 31, 17406-17415.

Fields of research

Neurogenetics / neurodevelopment

Research Theme

Notre équipe travaille sur l’horloge circadienne qui contrôle les rythmes activité-repos dans le cerveau de la drosophile, selon trois axes de recherche :- Bases neurales de l’horloge cérébrale : rôle des différents oscillateurs neuronaux et organisation du réseau, voies de synchronisation par la lumière et la température (entrées), transmission de l’information circadienne dans le cerveau (sorties)- Différenciation des neurones d’horloge et mise en place de la fonction circadienne au cours du développement cérébral- Bases moléculaires de l’oscillateur circadien : contrôle post-traductionnel des protéines d’horloge (phosphorylation, ubiquitination, dégradation) et recherche de nouveaux composants de l’horloge par des approches génétiques et moléculaires.

Lab rotation

Coordination of morphogenesis with axonogenesis in the developing olfactory placode

Chercheur responsable: 

ROUYER François

Dates: 

1 September 2016 - 30 June 2017

Date limite de candidature: 

1 September 2016

Lab Rotation:

~ Sep-Dec 2016 ~ Jan-March 2017 ~ Apr-June 2017

Project: 

Drosophila has about 150 clock neurons that control time-of-day information and orchestrate circadian behavioral rhythms such as sleep-wake cycles. Different periods of diurnal time, e.g., morning and evening, are encoded by distinct neuronal subpopulations. We are interested in (a) deciphering the pathway of information flow from these master clock neurons, (b) and in understanding how the downstream circuit decodes temporal information. To this end we have selected transgenic lines that express Gal4/LexA transgenes in specific populatins of neurons whose anatomical location in the brain suggests possible connections with clock neurons. These transgenes allow the considered neurons to be analyzed anatomically and functionally. The project will focus on neurons that might be downstream targets of the clock neurons that contribute to the evening peak of activity in light:dark cycles. We will use molecular-genetic tools to anatomically and functionally verify whether and how these putative downstream neurons are connected different types of evening clock neurons. The behavioral contribution of these neurons will be analyzed by manipulating their activity (hyperexcitation or silencing) in different environmental conditions. The experiments will involve Drosophila genetics, behavioral analysis (sleep-wake cycles), as well as anatomical and functional imaging (Ca2+) of the clock/target neurons.

Address: Paris-Saclay Institut of Neuroscience 1 av. de la terrasse, 91190 Gif-sur-Yvette

Phone: 33 1 69 82 34 36

Email: rouyer@inaf.cnrs-gif.fr

Website



Superviseur: 

François ROUYER