Cerebellum, Navigation and Memory


Research center

9 Quai Saint-Bernard Université Pierre et Marie Curie, Campus Jussieu, Bâtiments A-B-C
75005 Paris
Michel Labouesse


Université Pierre et Marie Curie


Neuroscience Paris Seine
U1130 UMR8246 UMCR18


spatial memory
spatial navigation


Liens vidéos:

- « les-chemins-de-l-orientation »

UNIVERSCIENCE - Cité des sciences - Sens de l’orientation ? Où ça ?

Bibliothèque Médicis  « sciences-bibliotheque-medicis_news »


Science à Coeur: http://video.upmc.fr/differe.php?collec=CS_C_sac4&video=10

Traut N., Beggiato A., Bourgeron T., Delorme R., Rondi-Reig L., Paradis AL, Toro R. (accepted) Cerebellar volume in autism: Meta-analysis and analysis of the ABIDE cohort, Biological psychiatry [IF: 11.4]

Bellassen V., Igloi K., de Souza LC., Dubois B., Rondi-Reig L. Spatio-temporal navigation as behavioral cognitive marker J. Neuroscience, 32(6):19421952, 2012 [IF: 6.9]

de Lavilléon G, Lacroix MM, Rondi-Reig L*, Benchenane K*. Explicit memory creation during sleep demonstrates a causal role of place cells in navigation. Nat Neurosci. 18(4):493-5. 2015 [IF: 16.7]

Iglói K., Doeller C.F., Paradis A.L., Benchenane K., Berthoz A., Burgess N. and Rondi-Reig L. Interaction between hippocampus and cerebellum Crus I in sequence-based but not place-based navigation. Cerebral cortex, 25(11):4146-54, 2015  [IF: 8.28]

Cabral H.O., Vinck M., Fouquet C., Pennartz C.M.A., Rondi-Reig L., and Battaglia F.P. Oscillatory dynamics and place field maps reflect sequence and place memory processing in hippocampal ensembles under NMDA receptor control. Neuron, 81(2):402-15, 2014 [IF: 15.05]


Fields of research

Neurophysiology / systems neuroscience

Research Theme

We aim at understanding the neural bases of navigation and spatial memory. The principal objective of our work is to provide a comprehensive characterization of how the cerebellum participates to spatial cognition.

This contribution presumably operates, at different levels, including the computation of sensory-motor signals and a functional influence on forebrain areas supporting memory and executive functions (e.g. hippocampus and/or associative cortices).

Our research is divided in two complementary axes that we address using a translational approach both in mice obtained by conditional mutagenesis and in humans:

  • 1) Understand the dynamics of the brain navigation network by measuring functional activity of the cerebellum and the forebrain areas during navigation.
  • 2) Develop behavioral markers to evaluate spatial cognition under pathological state (i.e. Alzheimer disease, Autism Spectrum Disorders), both in patients and mice models.

The technical strength of our project lies in the combination of multi-scale experimental techniques: in vivo electrophysiology (spikes activity and local field potential), optogenetic control of neuronal activity, brain imaging and multi-parametric analysis of complex navigation behavior, using innovative tests in real-world and virtual reality environments.